

Exploring an Alternative Approach to the Synthesis of Arylalkyl and Indolylmethyl Glucosinolates

Stéphanie Cassel^b, Brigitte Casenave^a, Gérard Déléris^a, Laurent Latxague^a and Patrick Rollin^{b*}

^a Laboratoire de Chimie Bio-Organique, Université Victor Segalen Bordeaux 2, 146 Rue Léo Saignat, F-33076 Bordeaux, France.

Received 19 February 1998; accepted 15 May 1998

Abstract: A new approach to the elaboration of hydroximoyl chlorides - key-compounds in the synthesis of glucosinolates - based on nitrovinyl intermediates was explored in the case of arylalkyl conjugates and their indolylmethyl counterparts. © 1998 Elsevier Science Ltd. All rights reserved.

Introduction

Glucosinolates (GSLs) 1 are long-known phyto-molecules which have always been associated with a strong and highly diversified physiological impact in animals and plants.¹

HO
$$\stackrel{OH}{HO}$$
 $\stackrel{O}{HO}$ $\stackrel{O}{I}$ $\stackrel{O}{I}$

A limited number of pure GSLs can be isolated from crucifer vegetables through dedicated extractive and separative procedures, which prove tedious and problematical in some cases.²

In contrast, the synthetic approach opens more widely applicable routes to most naturally-occurring GSLs³ and, moreover, it gives the only access to structurally-modified or totally artificial GSLs,⁴ which are useful substrates in miscellaneous analytical⁵ or biological⁶ applications.

The synthetic pathways which have been developed for GSLs within recent decades are invariably based on a key coupling step between partially protected 1-thio- β -D-glucopyranose 2 and a highly reactive hydroximoyl chloride 3 to yield stereospecifically a (Z)-thiohydroximate precursor 4:

AcO
$$AcO$$
 SH + CI NOH Et_2O/CH_2Cl_2 AcO O S AcO AcO

0040-4020/98/\$19.00 © 1998 Elsevier Science Ltd. All rights reserved. *PII:* S0040-4020(98)00465-7

Institut de Chimie Organique et Analytique, UPRES-A 6005, Université d'Orléans, B.P. 6759, F-45067 Orléans Cedex 2, France.

^{*} Corresponding author: fax: +33 (0) 2 38 49 45 79 e-mail: patrick.rollin@univ-orleans.fr

Hydroximoyl chlorides 3 can in turn be produced:

- either by direct chlorine⁷ or N-chlorosuccinimide⁸ chlorination of the corresponding aldoximes, in which case unwanted side-reactions such as substitutive chlorination of the A moiety cannot always be avoided.⁹
- or through transformation of a primary nitro-derivative RCH₂NO₂ into its nitronate anion, which in turn is reacted at low temperature with an electrophilic activator / Cl-donor, e.g. thionyl chloride. The latter methodology is indeed better adapted for chlorination-sensitive or oxidation-prone substrates, but i) preparation of the nitro-derivative commonly through chemoselective hydrogenation of a nitrovinyl precursor is not always straightforward and ii) preparation and handling of alkaline nitronate salts can occasionally prove tricky.

Lately, Kulkarni *et al.*¹¹ developed from nitrovinyl precursors **5** a new and direct access to arylalkyl hydroximoyl chlorides **6**:

Ar
$$NO_2$$
 CH_2Cl_2 , π , 1 h Cl Cl

RESULTS AND DISCUSSION

Our recent involvement in an analytical program aimed at the evaluation of the GSL content in white mustard (Sinapis alba L.) and related cruciferous adventices led us to perform the synthesis of desulfo-glucosinalbin 8a for HPLC standardization. We therefore took this opportunity to investigate the applicability of the Kulkarni method. Hence p-hydroxy-(2-nitro)styrene $5a^{12}$ was treated with triethylsilane and $TiCl_4$ and the crude reaction product was subsequently reacted with thiosugar 2 in standard conditions.

i) TiCl,, Et,SiH, CH,Cl,, rt, 1 h. ii) aqueous work-up. iii) 2, CH,Cl,/Et,O, Et,N, rt, 2 h. iv) MeOH/MeONa, rt, 24 h.

After purification of the reaction mixture, it appeared that the expected intermediate thiohydroximate 7a was only obtained in very small amounts. It was inferred from this result that the presence of a free phenolic function was inconsistent with the Kulkarni reaction conditions, so we decided to try and react a protected form of 5a. When using p-acetoxy-(2-nitro)styrene 5b¹² as chlorine acceptor, the outcome was incomparably better - the thiohydroximate 7b¹³ being isolated in 82 % yield.

It was of course further expected¹¹ that the presence on the aromatic nucleus of alkoxy substituents would also allow the smooth transformation into hydroximoyl chlorides 6 and consequently the preparation of compounds 7. This was demonstrated in the case of p- and o-methoxy-(2-nitro)styrenes 5c and 5d,¹² which led to thiohydroximates 7c¹³ and 7d in 84 and 50 % yield, respectively. Standard deacetylation of 7b, 7c and 7d in a basic medium afforded respectively desulfo-glucosinalbin 8a, desulfo-glucoaubrietin 8c and its artificial regioisomer 8d. Compounds 8a and 8c could be used quite satisfactorily as HPLC calibrants for the analysis of miscellaneous samples of Sinapis alba L. and Aubrietia sp.

This work demonstrates that synthesizing substituted glucotropaeolins and other arylalkyl glucosinolates can be envisaged via an alternative route, skipping the cumbersome intermediates of the previously reported methods.^{7,10}

Extension of the Kulkarni-type approach to the synthesis of other families of GSLs would of course be of prime interest. The glucobrassicins (3-indolylmethyl GSLs) constitute a particularly attractive family because of their marked physiological effects in animals and man.¹⁴

It became clear from the foregoing results that the indole precursor for the Kulkarni reaction should be N-protected, so the readily available 3-(2-nitrovinyl)indole 10a¹⁵ was transformed in 88% yield into the known N-acetyl-3-(2-nitrovinyl)indole 10b, the was then reacted with TiCl₄ and triethylsilane. The crude intermediate hydroximoyl chloride produced was used without further purification in the coupling step to afford the glycosyl thiohydroximate 11b in 35% yield - a decent outcome for indole GSL.

The O-sulfation of 11b followed by deprotection of glucobrassicin peracetate 12b gave glucobrassicin 13b in 55 % yield.

As in the case of arylalkyl GSLs, this alternative approach competes favourably with our previously published procedure:^{3a} the transformation of the nitrovinyl precursor **10a** into the key-compound **11b** is appreciably shorter and spares tedious handling of an alkaline nitronate.

Nevertheless, in order to try and evaluate the influence of the N-protecting group on the outcome of the coupling step affording the thiohydroximate, three other nitrovinyl precursors were prepared: N-methyl-3-(2-nitrovinyl)indole **10c**, ¹⁵ N-(*t*-butoxycarbonyl)-3-(2-nitrovinyl)indole **10d** and N-(phenylsulfonyl)-3-(2-nitrovinyl)indole **10e**. Treatment of **10c** in the Kulkarni conditions, followed by coupling with thio-sugar **2** led to thiohydroximate **11c** in 76 % yield; the yield of the same transformation in three steps - via the nitronate - never exceeded 24 %. The same reaction conditions applied to **10d** afforded no coupled product whereas the N-sulfonylated nitrovinyl derivative **10e** could be transformed into the thiohydroximate **11e** with a 55 % coupling yield.

i) CH₃CN, MeI, K₂CO₃, reflux, 6 h. ii) CH₂Cl₂, BOC₂O, Et₃N, rt, 24 h. iii) NaH, THF, PhSO₂Cl, rt, 3 h. iv) CH₃NO₂, ammonium acetate, reflux, 2 h. v) Ac₂O, DMAP. vi) TiCl₄, Et₃SiH, CH₂Cl₂, rt, 1 h. vii) aqueous work-up. viii) **2**, CH₃Cl₄/Et₃O, Et₃N, rt, 2 h. ix) HSO₃Cl, pyridine, 0°C. x) MeOK, MeOH.

It is thus made clear in the indole series that the N-substitution is critical with regard to the Kulkarnimodified coupling step. The case of **10d** is atypical because of the particular Lewis acid-sensitivity of the *t*-BOC group, resulting in ill-timed deprotection of the indole nitrogen.

CONCLUSION

In the expanding field of glucosinolates (GSLs), extractive and synthetic approaches are complementary. Because of growing applications of natural and artificial GSLs, improved chemical synthesis methodologies are constantly required in order to reduce the length and discomfort of the sequences.

The applicability of a shortened and simple pathway was fully demonstrated in the case of two important structural families: the arylalkyl GSLs and the indolylmethyl GSLs. Further improvements of the synthetic pathways to other GSL types are currently under investigation in our laboratory.

EXPERIMENTAL PART

Melting points were determined on a Kofler hot stage apparatus and are uncorrected. NMR spectra were recorded in CDCl₃ (unless otherwise stated) at 298K on Bruker DPX 250 or AM 300 spectrometers. Chemical shifts are expressed in parts per million downfield from TMS. In the presentation of NMR data, Hi refers to the indole moiety. Optical rotations were measured at 20°C with a Jobin-Yvon type 71 digital or a Perkin-Elmer 141 polarimeter. Thin layer chromatography was performed on aluminum plates precoated with Merck silica gel 60 F₂₅₄. Column chromatography was performed using silica gel 60 (70-230 mesh, Merck, Germany), and flash chromatography using silica gel 60 (230-400 mesh, SDS, France). Commercially available chemicals were used without further purification. Thiosugar 2 [19879-84-6] is commercially available.

The substituted *E*-nitrostyrenes **5a**, **5b**, **5c** and **5d** were produced according to the procedure described by Lappin¹⁷ and recrystallised from ethanol.

p-Hydroxy-(2-nitro)styrene (5a):

Yellow crystals (52 %); mp 168-169°C; ¹H NMR: d 7.98 (d, 1H, H-a), 7.52 (d, 1H, H-b, $J_{\text{H-a,H-b}}$ =13.8 Hz), 7.48(d, 2H, H-2, H-6), 6.91 (d, 2H, H-3, H-5), 5.44 (s, 1H, OH).

p-Acetoxy-(2-nitro)styrene (5b):

Yellow crystals (88 %); mp 160-161°C; ¹H NMR: d 8.00 (d, 1H, H-a), 7.58 (d, 2H, H-2, H-6), 7.56 (d, 1H, H-b, $J_{\text{H-a,H-b}}$ =13.7 Hz), 7.23 (d, 2H, H-3, H-5), 2.34 (s, 3H, OAc).

p-Methoxy-(2-nitro)styrene (5c):

Yellow crystals (35 %); mp 86-87°C; ¹H NMR: d 7.98 (d, 1H, H-a), 7.52 (d, 1H, H-b, $J_{\text{H-a,H-b}}$ =13.6 Hz), 7.51 (d, 2H, H-2, H-6), 6.97 (d, 2H, H-3, H-5), 3.88 (s, 3H, OCH₃).

o-Methoxy-(2-nitro)styrene (5d):

Bright yellow oil (25 %) that crystallised at low temperature; mp <50°C; ¹H NMR: d 8.15 (d, 1H, H-a), 7.89 (d, 1H, H-b, $J_{\text{H-all-b}}$ =13.6 Hz), 7.46 (d, 1H, H-6), 6.92-7.06 (m, 3H, H-3, H-4, H-5), 3.96 (s, 3H, OCH_a).

N-Methyl-3-formyl indole (9c) was prepared according to ref. 15

Yellow-green crystals (95 %); mp 68-70°C; ¹H NMR: d 9.87 (s, 1H, CHO), 8.22-8.27 (m, 1H, H-4i), 7.53 (s, 1H, H-2i), 7.25-7.29 (m, 3H, H-5i, H-6i, H-7i), 3.74 (s, 3H, NMe).

N-t-Butyloxycarbonyl-3-formyl indole (9d) was prepared according to ref. 18

Colourless crystals (100 %); mp 124-126°C; ¹H NMR: d 10.07 (s, 1H, CHO), 8.28 (d, 1H, $J_{\text{H-4i,H-5i}}$ = 7.6 Hz, H-4i), 8.24 (s, 1H, H-2i), 8.14 (d, 1H, $J_{\text{H-7i,H-6i}}$ = 7.6 Hz, H-7i), 7.41 (dd, 1H, H-6i), 7.36 (dd, 1H, H-5i), 1.70 (s, 9H, Me₃C). Anal. calcd for C₁₄H₁₅NO₃: C, 68.55; H, 6.16; N, 5.71. Found: C, 68.49; H, 6.09; N, 5.58. **N-Phenylsulfonyl-3-formyl indole (9e)** was prepared according to ref. ¹⁹

Light brown crystals (89 %); mp 155-157°C; ¹H NMR: d 10.12 (s, 1H, CHO), 8.26 (m, 1H, H-4i), 8.01-7.91, 7.72-7.34 (m, 9H, H-2i, H-5i, H-6i, H-7i + PhSO₂).

The substituted *E*-nitrovinylindoles **10a** and **10c** were produced according to the procedure described by Canoira.¹⁵

1-H-3-(2-Nitrovinyl)indole (10a):

(65 %); mp 169-172°C; ¹H NMR: d 8.30 (d, 1H, , H-a, $J_{\text{H-a, H-b}}$ =13.6 Hz), 7.80 (d, 1H, H-b), 7.78 (d, 1H, H-4i), 7.67 (d, 1H, $J_{\text{H-2i, NH}}$ =3.0 Hz, H-2i), 7.48 (m, 1H, H-7i), 7.34 (m, 2H, H-5i, H-6i,).

N-Acetyl-3-(2-nitrovinyl)indole (10b) was produced by acetylation of 10a:

(88 %); mp 165-167°C; ¹H NMR: d 8.18 (d, 1H, H-a, $J_{\text{H-a, H-b}}$ =13.4 Hz), 7.87 (s, 1H, H-2i), 7.81 (d, 1H, H-b), 7.41-7.52 (m, 2H, H-6i), 7.28 (d, 1H, H-7i), 2.72 (s, 3H, COCH₃).

N-Methyl-3-(2-nitrovinyl)indole (10c):

Yellow crystals (recrystallised from methanol) (83 %); mp 170-172°C; ¹H NMR: d 8.25 (d, 1H, H-a, $J_{\text{H-a, H-b}}$ =13.4 Hz), 7.76 (d, 1H, H-b), 7.75 (d, 1H, H-4i), 7.52 (s, 1H, H-2i), 7.40-7.30 (m, 3H, H-5i, H-6i, H-7i), 3.88 (s, 3H, NMe).

N-t-Butyloxycarbonyl-3-(2-nitrovinyl)indole (10d):

A suspension of the N-protected aldehyde (1.0 g, 4.1 mmol) and ammonium acetate (1.1 eq.) in nitromethane (10 mL) was stirred under reflux for 2 hours, then the mixture was allowed to cool. The solvent was evaporated under reduced pressure and the residue was recrystallised from methanol (541 mg, 46 %); mp 144-146°C; ¹H NMR: d 8.20 (d, 1H, H-a, $J_{\text{H-a, H-b}}$ =13.6 Hz), 8.06 (s, 1H, H-2i), 7.81 (d, 1H, H-b), 7.73-7.77 (m, 1H, H-4i), 7.38-7.50 (m, 3H, H-5i, H-6i, H-7i), 1.72 (s, 9H, Me₃C). Anal. calcd for $C_{15}H_{16}N_2O_4$: C, 62.49; H, 5.59; N, 9.72. Found: C, 62.41; H, 5.43; N, 9.50.

N-Phenylsulfonyl-3-(2-nitrovinyl)indole (10e):

A suspension of the N-protected aldehyde (1.5 g, 5.3 mmol) and ammonium acetate (1.1 eq.) in nitromethane (10 mL) was stirred under reflux for 2 hours, then the mixture was allowed to cool. The solvent was evaporated under reduced pressure and the residue was purified by flash chromatography on silica gel (eluent petroleum ether/ethyl acetate 7:3) to yield yellow crystals which were recrystallised from methanol (508 mg, 44 %); mp 207-209°C; 1 H NMR: d 8.16 (d, 1H, H-a, $J_{\text{H-a, H-b}}$ =13.7 Hz), 7.37-8.07 (m, 11H, H-b, H-2i, H-4i, H-5i, H-6i, H-7i + PhSO₂). Anal. calcd for $C_{16}H_{12}N_2O_4S$: C, 58.53; H, 3.68; N, 8.53. Found: C, 58.62; H, 3.71; N, 8.41.

General procedure for the synthesis of thiohydroximates 7a-d and 11a-e:

To a stirred solution of the primary nitro-derivative (2 eq.) in CH₂Cl₂ (10 mL/mmol) under argon Et₃SiH (2.2 eq.) was added. The solution was cooled in an ice bath and TiCl₄ (2.4 eq.) was added dropwise. The mixture was stirred under argon for one hour, then poured on ice and extracted three times with CH₂Cl₂. The organic layer was washed with water, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was dried under high vacuum and the crude product obtained was dissolved in a 2:1 mixture of dry Et₂O/CH₂Cl₂ (18 mL/mmol). 2,3,4,6 Tetra-O-acetyl-1-thio-b-p-glucopyranose (1 eq.) dissolved in CH₂Cl₂ was added and the resulting mixture was treated with Et₃N (6 eq.) diluted in anhydrous ether. The solution was stirred for 2 hours at room temperature under argon, then acidified with an aqueous 0.7 N solution of H₂SO₄ (20 mL/mmol of sugar). The mixture was stirred for about 10 minutes and separated. The aqueous phase was extracted twice with CH₂Cl₂, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel (eluent CH₂Cl₂/MeOH 1 to 3 %) to yield the pure thiohydroximate.

Glucosinalbin thiohydroximate (7a):

Yellowish oil (<10 %, contaminated material).

p-O-Acetyl glucosinalbin thiohydroximate (7b):

Brownish foam (82 %); $[a]_{D} = -8 (c \ 1.0, CHCl_{3}).$

Glucoaubrietin thiohydroximate (7c):

Colourless crystals (84 %); mp 152-154°C; $[a]_{p} = -1$ (c 1.0, CHCl₃).

o-Methoxy glucotropaeolin thiohydroximate (7d):

Colourless foam (50 %); $[a]_{D} = +11$ (c 1.0, CHCl₃). Anal. calcd for $C_{23}H_{29}NO_{11}S$: C, 52.36; H, 5.54; N, 2.66. Found: C, 52.12; H, 5.32; N, 2.47.

d (ppm) J (Hz)		H ₂ J ₂₃	H ₃	H_{4} J_{45}	$H_{\scriptscriptstyle{5}}$		$H_{\scriptscriptstyle 6b} \ J_{\scriptscriptstyle 5.6h}$	OAc	NOH	Ηα,α'	H _{Ar}	R,
7a	d 4.85 9.7	m	4.94 - 5	5.13	m 3.52 5.5	dd 4.15 12.3	dd 4.05 2.5	s 2.10 s 2.03 s 1.99	7.98	s 3.89	d 7.14 d 6.83	s 5.35
7ь	d 4.85 9.7	m	4.95 - 5	5.14	m 3.52 5.5	dd 4.17 12.4	dd 4.03 2.4	s 2.08, s 2.02 s 1.99, s 1.98	7.83	s 3.94	d 7.29 d 7.10	s 2.31
7c	d 4.83 9.6	m	4.97 - 5	5.07	m 3.54 5.7	dd 4.16 12.5	dd 4.05 2.5	s 2.09 s 2.02 s 1.97	8.00	s 3.90	d 7.18 d 6.90	s 3.83
7 d	d 4.84 9.5	m	4.95 - 5	5.09	m 3.55 5.4	dd 4.17 12.5	dd 4.07 2.3	s 2.09, s 2.02 s 1.99, s 1.94	7.87	d 4.05 d 3.78 Ja,a'=16.7	7.32, 7.23 6.98, 6.92	s 3.90

Table 1: NMR data for thiohydroximates 7a-d.

N-Acetyl glucobrassicin thiohydroximate (11b):

White solid (35%); mp 203°C; [a]_D = -10 (c 1.0, CHCl₃). Anal. calcd for $C_{26}H_{30}N_2O_{11}S$: C, 53.97; H, 5.23; N, 4.84. Found: C, 53.80; H, 5.09; N, 4.71.

N-Methyl glucobrassicin thiohydroximate (11c):

Brownish oil (76 %); $[a]_D = -9$ (c 1.0, CHCl₃). Anal. calcd for $C_{25}H_{30}N_2O_{10}S$: C, 54.53; H, 5.49; N, 5.09. Found: C, 54.58; H, 5.39; N, 4.97.

N-Phenylsulfonyl glucobrassicin thiohydroximate (11e):

Yellowish oil (55 %); $[a]_{D} = -10$ (c 1.0, CHCl₃). Anal. calcd for $C_{30}H_{32}N_{2}O_{12}S_{2}$: C, 53.24; H, 4.77; N, 4.14. Found: C, 53.09; H, 4.70; N, 3.98.

d (ppm) J (Hz)	$egin{aligned} oldsymbol{H_1} \ oldsymbol{J_{1,2}} \end{aligned}$	$egin{array}{c} \mathbf{H_2} \\ oldsymbol{J_{2,3}} \end{array}$	$egin{bmatrix} \mathbf{H_3} \\ oldsymbol{J_{34}} \end{matrix}$	H_4 $J_{4.5}$	$H_{\scriptscriptstyle 5} \ J_{\scriptscriptstyle 5.6a}$	$H_{_{6a}}$ $J_{_{6a,6h}}$	$H_{6b} = J_{5.6b}$	OAc	NOH	Ηα,α'	Hi	R ₁
11b		m 4.95	5 - 5.10		m 3.45	п	n - 4.15	s 1.99 s 1.96 s 1.95	-	s 4.05	H ₄ 8.41 H ₂ , H ₅ , H ₆ , H ₇ m 7.23-7.52	s 2.60
11c		m 4.97	7 - 5.04		m 3.29 4.9	dd 4.08 12.4	dd 3.92 2.3	s 2.07 s 1.99 s 1.97	8.00	s 4.03	H ₄ 7.59 H, 7.33 H ₆ 7.28 H ₅ 7.15 H, 6.97	s 3.79
11e		m 4.92	2 - 5.09		m 3.50 5.7	dd 4.16 12.4	dd 4.05 2.4	s 2.05 s 2.02 s 2.00	8.33	s 3.96	H ₄ 7.99 H ₇ H ₆ 7.87-7.91 H, 7.76	m 7.46- 7.59

Table 2: NMR data for thiohydroximates 11b, 11c and 11e.

General procedure for the deacetylation of thiohydroximates 7b, 7c and 7d:

The thiohydroximate was deacetylated by a catalytic amount of MeONa in dry MeOH overnight at room temperature. The basic solution was neutralised by addition of acidic ion-exchange resin (Amberlite® IR 120, H⁺). The resin was removed by filtration and the neutral methanolic solution was evaporated under reduced pressure. The residue was purified by flash chromatography on silica gel (eluent CH₂Cl₂/MeOH 10 to 20 %) to yield the pure desulfoglucosinolate 8a, 8c or 8d.

Desulfoglucosinalbin (8a):

Colourless amorphous powder; $[a]_D = -26 (c \ 0.45, MeOH)$; ¹H NMR (D₂O). Anal. calcd for C₁₄H₁₉NO₇S: C, 48.69; H, 5.55; N, 4.06. Found: C, 48.81; H, 5.40; N, 3.94.

Desulfoglucoaubrietin (8c):

Colourless amorphous powder; $[a]_{D} = -36 (c \ 0.3, MeOH)$; ¹H NMR (D₂O). Anal. calcd for C₁₅H₂₁NO₇S: C, 50.13; H, 5.89; N, 3.90. Found: C, 49.97; H, 5.95; N, 3.76.

o-Methoxy desulfoglucotropaeolin (8d):

Colourless crystalline solid (91 %); mp 106-108°C; [a]_D = 0 (c 1.0, H₂O); ¹H NMR (D₂O). Anal. calcd for C₁₅H₂₁NO₂S: C, 50.13; H, 5.89; N, 3.90. Found: C, 50.03; H, 5.99; N, 3.72.

d (ppm) J (Hz)	$H_{_1}$ $J_{_{1,2}}$	H ₂	$oldsymbol{H_3} oldsymbol{J_{34}}$	H_4 J_{45}	7	$H_{_{6a}}$ $J_{_{6a,6h}}$	$egin{array}{c} \mathbf{H_{6b}} \ J_{5,6b} \end{array}$	На,а'	Н	ОМе
8a	m 4.75 9.3	3.34	3.44	3.37	m 3.26 2.5	dd 3.71 12.6	dd 3.68 4.8	d 4.00, d 3.97 Ja,a'= 16.6	d 7.25 d 6.94	-
8c	m 4.74 9.4	dd 3.35 9.6	dd 3.44 9.6	dd 3.37 9.6	m 3.27 2.5	dd 3.71 12.5	dd 3.67 4.8	s 4.01	d 7.32 d 7.05	•
8d	m 4.78 10.0	3.39	m 3.46	5 - 3.50	m 3.30 2.5	dd 3.77 13.0	dd 3.72 5.0	d 4.12, d 3.93 Ja,a'= 16.6	m 7.42-7.08	s 3.93

Table 3: NMR data for desulfo-GSL 8a, 8c and 8d.

N-Acetyl proglucobracissin (12b):

To a cooled (0°C) and stirred solution of thiohydroximate **11b** (200 mg, 0.34 mmol) in dry pyridine (2.5 mL) and dry dichloromethane (1.25 mL) under inert atmosphere, a solution of chlorosulfonic acid (0.43 g, 3.7 mmol) in dry diethylether (1.25 mL) was added over a period of 40 min. The resulting mixture was stirred for 24 h at room temperature, hydrolyzed with a KHCO₃ solution (0.2 g) in water (2.5 mL), stirred another 30 min, and extracted with chloroform. The combined extracts were dried (MgSO₄), filtered and evaporated under reduced pressure. Flash-chromatography (CH₃OH 5% in dichloromethane) yielded **12b** as a white solid (150 mg, 62%); mp 162°C (dec.); [a]_b = -4 (c 1.0, MeOH); ¹H NMR (DMSO- d_6): d 8.29 (d, 1H, H-4i, J = 7.4 Hz), 7.87 (s, 1H, H-2i), 7.70 (d, 1H, H-7i, J = 7.4 Hz), 7.32 (dd, 1H, H-6i, J = 7.4 Hz), 7.23 (dd, 1H, H-5i, J = 7.4 Hz), 5.55 (d, 1H, H-1, J_{1,2} = 9.5 Hz), 5.36 (dd, 1H, H-3, J_{3,4} = 9.5 Hz), 4.90 (dd, 1H, H-4, J_{4,5} = 9.5 Hz), 4.82 (dd, 1H, H-2, J_{2,3} = 9.5 Hz), 3.89-4.10 (m, 5H, H-5, H-6a, H-6b,Ha,a'), 2.62 (s, 3H, N-Ac), 1.82, 1.88, 1.91, 1.95 (4s, 12H, OAc).

Glucobrassicin (13b):

To a stirred solution of compound 12b (400 mg, 0.6 mmol) in anhydrous methanol (25 mL) under inert atmosphere a few drops of potassium methoxide (1N solution) were added until pH 8. After stirring for 12 h at room temperature, the solution was made neutral by the addition of glacial acetic acid, then concentrated under reduce pressure. The resulting brown solid was dissolved in water (5 mL), purified on Sep-Pak C-18 cartridges (Waters) and subjected to freeze-drying to yield 13b as a white solid (260 mg, 89%); H NMR (D₂O) and physical data were in agreement with previously reported data.^{3a}

Acknowledgements. The NMR expertise of Dr. B. Perly (CEA Saclay) is gratefully acknowledged. We are also indebted to Dr. A. Quinsac for HPLC analysis and to A. Therreau for technical assistance.

REFERENCES

- 1. Fenwick, G. R.; Heaney, R. K.; Mullin, W. J. CRC Crit. Rev. Food Sci. Nutr. 1983, 18, 123-201.
- 2. see for example (a) Truscott, R. J. W; Minchinton, I.; Sang, J. J. Sci. Food Agric. 1983, 34, 247-254. (b) Hanley, A. B.; Heaney, R. K.; Fenwick, G. R. ibid. 1983, 34, 869-873. (c) Bjerg, B.; Sorensen, H. in World Crops: Production, Utilization, Description, Wathelet, J. P, Ed., Martinus Nijhoff, Dordrecht, 1987, vol. 13, pp. 59-75.
- 3. (a) Viaud, M. C.; Rollin, P.; Latxague, L.; Gardrat, C. J. Chem. Res. 1992 (S), 207; (M), 1669-1681. (b) Mavratzotis, M.; Dourtoglou, V.; Lorin, C.; Rollin, P. Tetrahedron Lett. 1996, 37, 5699-5700. (c) Abramski, W.; Chmielewski, M. J. Carbohydr. Chem. 1996, 15, 109-113 and references cited therein.
- for previous papers see for example (a) Blanc-Muesser, M.; Driguez, H.; Joseph, B.; Viaud, M. C.; Rollin, P. Tetrahedron Lett. 1990, 31, 3867-3868. (b) Gardrat, C; Quinsac, A.; Joseph, B.; Rollin, P. Heterocycles 1993, 35, 1015-1027. (c) Joseph, B.; Rollin, P. J. Carbohydr. Chem. 1993, 12, 719-729. (d) ibid. 1993, 12, 1127-1138. (e) Cottaz, S.; Rollin, P.; Driguez, H. Carbohydr. Res., 1997, 298, 127-130.
- 5. Elfakir, C.; Lafosse, M.; Viaud, M. C.; Dreux, M. J. High Res. Chrom. 1992, 15, 392-398.
- 6. see for example (a) Iori, R.; Rollin, P.; Streicher, H.; Thiem, J.; Palmieri, S. FEBS Lett., 1996, 385, 87-90. (b) Cottaz, S.; Henrissat, B.; Driguez, H. Biochemistry, 1996, 35, 15256-15259.
- 7. Benn, M. H. Can. J. Chem. 1964, 42, 2393-2397.
- 8. (a) Liu, K. C.; Shelton, B. R.; Howe, R. K. J. Org. Chem. 1980, 45, 3916-3918. (b) Larsen, K. E.;

- Torssell, K. B. G. Tetrahedron 1984, 40, 2985-2988.
- 9. Saito, S.; Uzawa, H.; Nagatsugi, F. Chem. Pharm. Bull. 1989, 37, 2519-2522.
- 10. MacLeod, A. J.; Rossiter, J. T. J. Chem. Soc. Perkin Trans. I 1983, 717-721.
- 11. Kumaran, G.; Kulkarni, G.H. Tetrahedron Lett. 1994, 35, 9099-9100.
- 12. Armarego, W. L. F. J. Chem. Soc. C 1969, 986-990.
- 13. Benn, M. H. Can. J. Chem. 1965, 43, 1-5.
- 14. McDanell, R.; McLean, A. E. M.; Hanley, A. B.; Heaney, R. K.; Fenwick, G. R. Food Chem. Toxicol. 1988, 26, 59-70.
- 15. Canoira, L.; Gonzalo-Rodriguez, J.; Subirats, J. B.; Escario, J. A.; Jimenez, I.; Martinez-Fernandez, A. R. Eur. J. Med. Chem. 1989, 24, 39-42.
- 16. Royer, J.; Beugelmans-Verrier, M. Nouv. J. Chim. 1981, 5, 581-585.
- 17. Gairaud, C. B.; Lappin, G. R. J. Org. Chem. 1953, 18, 1-3.
- 18. Wolman, Y. Synthesis, 1975, 732.
- 19. Saulnier, M. G.; Gribble, G. W. J. Org. Chem., 1982, 47, 757-761.